###
**For A.P. $\mathrm{T}_{18}-\mathrm{T}_{8}$ = …….. ?**

A. d
B. 10d
C. 26d
D. 2d
**Answer: Option B**

## Show Answer

Solution(By Apex Team)

$\begin{aligned}\mathrm{T}_{\mathrm{n}}&=\mathrm{a}+(\mathrm{n}-1)\times\mathrm{d}\\
\mathrm{T}_{18}&=\mathrm{a}+17\mathrm{~d}\\
\mathrm{~T}_8&=\mathrm{a}+7\mathrm{~d}\\
\mathrm{~T}_{18}-\mathrm{T}_8&=17\mathrm{~d}-7\mathrm{~d}\\
&=10\mathrm{~d}\end{aligned}$

## Related Questions On Progressions

### How many terms are there in 20, 25, 30 . . . . . . 140?

A. 22B. 25

C. 23

D. 24

### Find the first term of an AP whose 8th and 12th terms are respectively 39 and 59.

A. 5B. 6

C. 4

D. 3

### Find the 15th term of the sequence 20, 15, 10 . . .

A. -45B. -55

C. -50

D. 0

### The sum of the first 16 terms of an AP whose first term and third term are 5 and 15 respectively is

A. 600B. 765

C. 640

D. 680